8#include "ruby/internal/config.h"
19#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
31#include "internal/array.h"
32#include "internal/complex.h"
33#include "internal/gc.h"
34#include "internal/numeric.h"
35#include "internal/object.h"
36#include "internal/rational.h"
37#include "ruby_assert.h"
39#define ZERO INT2FIX(0)
43#define GMP_GCD_DIGITS 1
45#define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
49static ID id_abs, id_integer_p,
55#define f_inspect rb_inspect
56#define f_to_s rb_obj_as_string
69 return rb_int_plus(x, y);
79 return rb_int_div(x, y);
89 VALUE r = rb_int_cmp(x, y);
90 if (!
NIL_P(r))
return rb_int_negative_p(r);
101 return rb_int_modulo(x, y);
111 if (y == ONE)
return x;
114 if (x == ONE)
return y;
116 return rb_int_mul(x, y);
123 if (
FIXNUM_P(y) && FIXNUM_ZERO_P(y))
132 return rb_int_abs(x);
147 return rb_str_to_inum(x, 10, 0);
157 return RTEST(rb_int_equal(x, y));
165 return rb_int_idiv(x, y);
169#define f_expt10(x) rb_int_pow(INT2FIX(10), x)
175 return FIXNUM_ZERO_P(x);
178 VALUE num = RRATIONAL(x)->num;
180 return FIXNUM_ZERO_P(num);
185#define f_nonzero_p(x) (!f_zero_p(x))
194 VALUE num = RRATIONAL(x)->num;
195 VALUE den = RRATIONAL(x)->den;
203f_minus_one_p(
VALUE x)
208 else if (RB_BIGNUM_TYPE_P(x)) {
212 VALUE num = RRATIONAL(x)->num;
213 VALUE den = RRATIONAL(x)->den;
250#define k_exact_p(x) (!k_float_p(x))
251#define k_inexact_p(x) k_float_p(x)
253#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
254#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
260 const size_t nails = (
sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
269 mpz_import(mx, BIGNUM_LEN(x), -1,
sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x));
270 mpz_import(my, BIGNUM_LEN(y), -1,
sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y));
277 zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2);
278 z = rb_big_new(zn, 1);
279 mpz_export(BIGNUM_DIGITS(z), &count, -1,
sizeof(BDIGIT), 0, nails, mz);
283 return rb_big_norm(z);
288#define f_gcd f_gcd_orig
294 unsigned long u, v, t;
307 u = (
unsigned long)x;
308 v = (
unsigned long)y;
309 for (shift = 0; ((u | v) & 1) == 0; ++shift) {
329 return (
long)(u << shift);
340 if (INT_NEGATIVE_P(x))
341 x = rb_int_uminus(x);
342 if (INT_NEGATIVE_P(y))
343 y = rb_int_uminus(y);
352 if (FIXNUM_ZERO_P(x))
358 x = rb_int_modulo(y, x);
367 return f_gcd_normal(x, y);
374 if (RB_BIGNUM_TYPE_P(x) && RB_BIGNUM_TYPE_P(y)) {
375 size_t xn = BIGNUM_LEN(x);
376 size_t yn = BIGNUM_LEN(y);
377 if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn)
378 return rb_gcd_gmp(x, y);
381 return f_gcd_normal(x, y);
390 VALUE r = f_gcd_orig(x, y);
391 if (f_nonzero_p(r)) {
392 assert(f_zero_p(f_mod(x, r)));
393 assert(f_zero_p(f_mod(y, r)));
402 if (INT_ZERO_P(x) || INT_ZERO_P(y))
404 return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
408 struct RRational *dat = RRATIONAL(x)
410#define get_dat2(x,y) \
411 struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
418 RATIONAL_SET_NUM((
VALUE)obj, num);
419 RATIONAL_SET_DEN((
VALUE)obj, den);
426nurat_s_alloc(
VALUE klass)
428 return nurat_s_new_internal(klass, ZERO, ONE);
434 return nurat_s_new_internal(klass, x, ONE);
438nurat_int_check(
VALUE num)
441 if (!k_numeric_p(num) || !f_integer_p(num))
447nurat_int_value(
VALUE num)
449 nurat_int_check(num);
450 if (!k_integer_p(num))
460 if (INT_NEGATIVE_P(*den)) {
461 *num = rb_int_uminus(*num);
462 *den = rb_int_uminus(*den);
464 else if (INT_ZERO_P(*den)) {
473 if (*x == ONE || *y == ONE)
return;
475 *x = f_idiv(*x, gcd);
476 *y = f_idiv(*y, gcd);
482 nurat_canonicalize(&num, &den);
483 nurat_reduce(&num, &den);
485 return nurat_s_new_internal(klass, num, den);
489nurat_s_canonicalize_internal_no_reduce(
VALUE klass,
VALUE num,
VALUE den)
491 nurat_canonicalize(&num, &den);
493 return nurat_s_new_internal(klass, num, den);
499 assert(!k_rational_p(x));
500 assert(!k_rational_p(y));
501 return nurat_s_canonicalize_internal(klass, x, y);
507 assert(!k_rational_p(x));
508 assert(!k_rational_p(y));
509 return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
553nurat_f_rational(
int argc,
VALUE *argv,
VALUE klass)
558 if (
rb_scan_args(argc, argv,
"11:", &a1, &a2, &opts) == 1) {
562 raise = rb_opts_exception_p(opts, raise);
579nurat_numerator(
VALUE self)
597nurat_denominator(
VALUE self)
610rb_rational_uminus(
VALUE self)
615 return f_rational_new2(
CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
619#define f_imul f_imul_orig
623f_imul(
long a,
long b)
627 if (a == 0 || b == 0)
634 if (MUL_OVERFLOW_LONG_P(a, b))
635 r = rb_big_mul(rb_int2big(a), rb_int2big(b));
645f_imul(
long x,
long y)
647 VALUE r = f_imul_orig(x, y);
664 long ig = i_gcd(ad, bd);
667 VALUE a = f_imul(an, bd / ig);
668 VALUE b = f_imul(bn, ad / ig);
672 c = rb_int_plus(a, b);
674 c = rb_int_minus(a, b);
676 b = rb_int_idiv(aden, g);
678 num = rb_int_idiv(c, g);
679 a = rb_int_idiv(bden, g);
680 den = rb_int_mul(a, b);
684 VALUE g = f_gcd(aden, bden);
685 VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g));
686 VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g));
690 c = rb_int_plus(a, b);
692 c = rb_int_minus(a, b);
694 b = rb_int_idiv(aden, g);
696 num = rb_int_idiv(c, g);
697 a = rb_int_idiv(bden, g);
698 den = rb_int_mul(a, b);
703 double c = k ==
'+' ? a + b : a - b;
706 return f_rational_new_no_reduce2(
CLASS_OF(self), num, den);
709static double nurat_to_double(
VALUE self);
729 return f_rational_new_no_reduce2(
CLASS_OF(self),
730 rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
739 get_dat2(self, other);
741 return f_addsub(self,
742 adat->num, adat->den,
743 bdat->num, bdat->den,
'+');
770 return f_rational_new_no_reduce2(
CLASS_OF(self),
771 rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
780 get_dat2(self, other);
782 return f_addsub(self,
783 adat->num, adat->den,
784 bdat->num, bdat->den,
'-');
804 double x = (an * bn) / (ad * bd);
816 if (INT_NEGATIVE_P(bnum)) {
817 anum = rb_int_uminus(anum);
818 bnum = rb_int_uminus(bnum);
831 long g1 = i_gcd(an, bd);
832 long g2 = i_gcd(ad, bn);
834 num = f_imul(an / g1, bn / g2);
835 den = f_imul(ad / g2, bd / g1);
838 VALUE g1 = f_gcd(anum, bden);
839 VALUE g2 = f_gcd(aden, bnum);
841 num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2));
842 den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1));
844 return f_rational_new_no_reduce2(
CLASS_OF(self), num, den);
866 return f_muldiv(self,
876 get_dat2(self, other);
878 return f_muldiv(self,
879 adat->num, adat->den,
880 bdat->num, bdat->den,
'*');
910 return f_muldiv(self,
916 VALUE v = nurat_to_f(self);
917 return rb_flo_div_flo(v, other);
923 get_dat2(self, other);
926 return f_rational_new_no_reduce2(
CLASS_OF(self),
927 bdat->den, bdat->num);
929 return f_muldiv(self,
930 adat->num, adat->den,
931 bdat->num, bdat->den,
'/');
954 return rb_rational_div(self, rb_float_new(0.0));
956 return nurat_to_f(self);
957 div = rb_rational_div(self, other);
959 return nurat_to_f(div);
981 if (k_numeric_p(other) && k_exact_zero_p(other))
982 return f_rational_new_bang1(
CLASS_OF(self), ONE);
984 if (k_rational_p(other)) {
987 if (f_one_p(dat->den))
992 if (k_numeric_p(other) && k_exact_p(other)) {
994 if (f_one_p(dat->den)) {
995 if (f_one_p(dat->num)) {
996 return f_rational_new_bang1(
CLASS_OF(self), ONE);
999 return f_rational_new_bang1(
CLASS_OF(self),
INT2FIX(rb_int_odd_p(other) ? -1 : 1));
1001 else if (INT_ZERO_P(dat->num)) {
1002 if (rb_num_negative_p(other)) {
1006 return f_rational_new_bang1(
CLASS_OF(self), ZERO);
1019 if (INT_POSITIVE_P(other)) {
1020 num = rb_int_pow(dat->num, other);
1021 den = rb_int_pow(dat->den, other);
1023 else if (INT_NEGATIVE_P(other)) {
1024 num = rb_int_pow(dat->den, rb_int_uminus(other));
1025 den = rb_int_pow(dat->num, rb_int_uminus(other));
1040 return f_rational_new2(
CLASS_OF(self), num, den);
1043 else if (RB_BIGNUM_TYPE_P(other)) {
1044 rb_warn(
"in a**b, b may be too big");
1045 return rb_float_pow(nurat_to_f(self), other);
1048 return rb_float_pow(nurat_to_f(self), other);
1054#define nurat_expt rb_rational_pow
1076 switch (
TYPE(other)) {
1083 return rb_int_cmp(dat->num, other);
1084 other = f_rational_new_bang1(
CLASS_OF(self), other);
1092 get_dat2(self, other);
1100 num1 = rb_int_mul(adat->num, bdat->den);
1101 num2 = rb_int_mul(bdat->num, adat->den);
1103 return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
1133 if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
1140 return rb_int_equal(dat->num, other);
1143 const double d = nurat_to_double(self);
1148 const double d = nurat_to_double(self);
1153 get_dat2(self, other);
1155 if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
1158 return RBOOL(rb_int_equal(adat->num, bdat->num) &&
1159 rb_int_equal(adat->den, bdat->den));
1172 return rb_assoc_new(f_rational_new_bang1(
CLASS_OF(self), other), self);
1175 return rb_assoc_new(other, nurat_to_f(self));
1178 return rb_assoc_new(other, self);
1181 if (!k_exact_zero_p(RCOMPLEX(other)->imag))
1182 return rb_assoc_new(other, rb_Complex(self,
INT2FIX(0)));
1183 other = RCOMPLEX(other)->real;
1185 other = float_to_r(other);
1186 RBASIC_SET_CLASS(other,
CLASS_OF(self));
1189 other = f_rational_new_bang1(
CLASS_OF(self), other);
1191 return rb_assoc_new(other, self);
1206nurat_positive_p(
VALUE self)
1209 return RBOOL(INT_POSITIVE_P(dat->num));
1219nurat_negative_p(
VALUE self)
1222 return RBOOL(INT_NEGATIVE_P(dat->num));
1239rb_rational_abs(
VALUE self)
1242 if (INT_NEGATIVE_P(dat->num)) {
1243 VALUE num = rb_int_abs(dat->num);
1244 return nurat_s_canonicalize_internal_no_reduce(
CLASS_OF(self), num, dat->den);
1250nurat_floor(
VALUE self)
1253 return rb_int_idiv(dat->num, dat->den);
1257nurat_ceil(
VALUE self)
1260 return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
1278nurat_truncate(
VALUE self)
1281 if (INT_NEGATIVE_P(dat->num))
1282 return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
1283 return rb_int_idiv(dat->num, dat->den);
1287nurat_round_half_up(
VALUE self)
1289 VALUE num, den, neg;
1295 neg = INT_NEGATIVE_P(num);
1298 num = rb_int_uminus(num);
1300 num = rb_int_plus(rb_int_mul(num, TWO), den);
1301 den = rb_int_mul(den, TWO);
1302 num = rb_int_idiv(num, den);
1305 num = rb_int_uminus(num);
1311nurat_round_half_down(
VALUE self)
1313 VALUE num, den, neg;
1319 neg = INT_NEGATIVE_P(num);
1322 num = rb_int_uminus(num);
1324 num = rb_int_plus(rb_int_mul(num, TWO), den);
1325 num = rb_int_minus(num, ONE);
1326 den = rb_int_mul(den, TWO);
1327 num = rb_int_idiv(num, den);
1330 num = rb_int_uminus(num);
1336nurat_round_half_even(
VALUE self)
1338 VALUE num, den, neg, qr;
1344 neg = INT_NEGATIVE_P(num);
1347 num = rb_int_uminus(num);
1349 num = rb_int_plus(rb_int_mul(num, TWO), den);
1350 den = rb_int_mul(den, TWO);
1351 qr = rb_int_divmod(num, den);
1354 num = rb_int_and(num,
LONG2FIX(((
int)~1)));
1357 num = rb_int_uminus(num);
1368 return (*func)(self);
1372 if (!k_integer_p(n))
1376 s = rb_rational_mul(self, b);
1379 if (INT_NEGATIVE_P(n))
1384 if (!k_rational_p(s)) {
1385 s = f_rational_new_bang1(
CLASS_OF(self), s);
1390 s = rb_rational_div(f_rational_new_bang1(
CLASS_OF(self), s), b);
1393 s = nurat_truncate(s);
1399rb_rational_floor(
VALUE self,
int ndigits)
1402 return nurat_floor(self);
1406 return f_round_common(1, &n, self, nurat_floor);
1435nurat_floor_n(
int argc,
VALUE *argv,
VALUE self)
1437 return f_round_common(argc, argv, self, nurat_floor);
1465nurat_ceil_n(
int argc,
VALUE *argv,
VALUE self)
1467 return f_round_common(argc, argv, self, nurat_ceil);
1495nurat_truncate_n(
int argc,
VALUE *argv,
VALUE self)
1497 return f_round_common(argc, argv, self, nurat_truncate);
1538nurat_round_n(
int argc,
VALUE *argv,
VALUE self)
1541 enum ruby_num_rounding_mode mode = (
1543 rb_num_get_rounding_option(opt));
1544 VALUE (*round_func)(
VALUE) = ROUND_FUNC(mode, nurat_round);
1545 return f_round_common(argc, argv, self, round_func);
1549rb_flo_round_by_rational(
int argc,
VALUE *argv,
VALUE num)
1551 return nurat_to_f(nurat_round_n(argc, argv, float_to_r(num)));
1555nurat_to_double(
VALUE self)
1561 return rb_int_fdiv_double(dat->num, dat->den);
1576nurat_to_f(
VALUE self)
1578 return DBL2NUM(nurat_to_double(self));
1591nurat_to_r(
VALUE self)
1596#define id_ceil rb_intern("ceil")
1603 return rb_float_ceil(x, 0);
1613 return rb_int_div(x, y);
1617 return rb_funcallv(x, id_quo, 1, &y);
1620#define f_reciprocal(x) f_quo(ONE, (x))
1684 VALUE c, k, t, p0, p1, p2, q0, q1, q2;
1696 p2 = f_add(f_mul(k, p1), p0);
1697 q2 = f_add(f_mul(k, q1), q0);
1698 t = f_reciprocal(f_sub(b, k));
1699 b = f_reciprocal(f_sub(a, k));
1706 *p = f_add(f_mul(c, p1), p0);
1707 *q = f_add(f_mul(c, q1), q0);
1725nurat_rationalize(
int argc,
VALUE *argv,
VALUE self)
1727 VALUE e, a, b, p, q;
1736 if (INT_NEGATIVE_P(dat->num)) {
1737 rat = f_rational_new2(
RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den);
1740 a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e);
1741 b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e);
1746 nurat_rationalize_internal(a, b, &p, &q);
1748 RATIONAL_SET_NUM(rat, rb_int_uminus(p));
1749 RATIONAL_SET_DEN(rat, q);
1752 return f_rational_new2(
CLASS_OF(self), p, q);
1757rb_rational_hash(
VALUE self)
1763 n = rb_hash(dat->num);
1765 n = rb_hash(dat->den);
1772nurat_hash(
VALUE self)
1774 return ST2FIX(rb_rational_hash(self));
1784 s = (*func)(dat->num);
1802nurat_to_s(
VALUE self)
1804 return f_format(self, f_to_s);
1818nurat_inspect(
VALUE self)
1831nurat_dumper(
VALUE self)
1845 nurat_int_check(num);
1846 nurat_int_check(den);
1847 nurat_canonicalize(&num, &den);
1848 RATIONAL_SET_NUM((
VALUE)dat, num);
1849 RATIONAL_SET_DEN((
VALUE)dat, den);
1857nurat_marshal_dump(
VALUE self)
1862 a = rb_assoc_new(dat->num, dat->den);
1881 nurat_int_check(num);
1882 nurat_int_check(den);
1883 nurat_canonicalize(&num, &den);
1891rb_rational_reciprocal(
VALUE x)
1894 return nurat_convert(
CLASS_OF(x), dat->den, dat->num, FALSE);
1912 other = nurat_int_value(other);
1913 return f_gcd(self, other);
1931 other = nurat_int_value(other);
1932 return f_lcm(self, other);
1950 other = nurat_int_value(other);
1951 return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
1961 if (INT_NEGATIVE_P(y)) {
1962 x = rb_int_uminus(x);
1963 y = rb_int_uminus(y);
1971 return nurat_s_canonicalize_internal(
rb_cRational, x, y);
1986 return nurat_numerator(rat);
1992 return nurat_denominator(rat);
1995#define id_numerator rb_intern("numerator")
1996#define f_numerator(x) rb_funcall((x), id_numerator, 0)
1998#define id_denominator rb_intern("denominator")
1999#define f_denominator(x) rb_funcall((x), id_denominator, 0)
2001#define id_to_r idTo_r
2002#define f_to_r(x) rb_funcall((x), id_to_r, 0)
2011numeric_numerator(
VALUE self)
2013 return f_numerator(f_to_r(self));
2023numeric_denominator(
VALUE self)
2025 return f_denominator(f_to_r(self));
2041 return rb_complex_div(x, y);
2045 return rb_funcallv(x, idFdiv, 1, &y);
2049 return rb_rational_div(x, y);
2053rb_rational_canonicalize(
VALUE x)
2057 if (f_one_p(dat->den))
return dat->num;
2075rb_float_numerator(
VALUE self)
2081 r = float_to_r(self);
2082 return nurat_numerator(r);
2095rb_float_denominator(
VALUE self)
2101 r = float_to_r(self);
2102 return nurat_denominator(r);
2112nilclass_to_r(
VALUE self)
2125nilclass_rationalize(
int argc,
VALUE *argv,
VALUE self)
2128 return nilclass_to_r(self);
2141integer_to_r(
VALUE self)
2154integer_rationalize(
int argc,
VALUE *argv,
VALUE self)
2157 return integer_to_r(self);
2161float_decode_internal(
VALUE self,
VALUE *rf,
int *n)
2166 f = ldexp(f, DBL_MANT_DIG);
2168 *rf = rb_dbl2big(f);
2192float_to_r(
VALUE self)
2197 float_decode_internal(self, &f, &n);
2206 f = rb_int_mul(f, rb_int_pow(
INT2FIX(FLT_RADIX), n));
2216 VALUE e, a, b, p, q;
2223 return float_to_r(flt);
2225 nurat_rationalize_internal(a, b, &p, &q);
2232 VALUE a, b, f, p, q, den;
2235 float_decode_internal(flt, &f, &n);
2236 if (INT_ZERO_P(f) || n >= 0)
2240 VALUE radix_times_f;
2242 radix_times_f = rb_int_mul(
INT2FIX(FLT_RADIX), f);
2243#if FLT_RADIX == 2 && 0
2244 den = rb_int_lshift(ONE,
INT2FIX(1-n));
2249 a = rb_int_minus(radix_times_f,
INT2FIX(FLT_RADIX - 1));
2250 b = rb_int_plus(radix_times_f,
INT2FIX(FLT_RADIX - 1));
2254 return float_to_r(flt);
2258 nurat_rationalize_internal(a, b, &p, &q);
2277float_rationalize(
int argc,
VALUE *argv,
VALUE self)
2290 if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
2297 return (c ==
'-' || c ==
'+');
2301read_sign(
const char **s,
const char *
const e)
2305 if (*s < e && issign(**s)) {
2315 return (c ==
'e' || c ==
'E');
2319negate_num(
VALUE num)
2322 return rb_int_uminus(num);
2326 return rb_big_norm(num);
2331read_num(
const char **s,
const char *
const end,
VALUE *num,
VALUE *nexp)
2333 VALUE fp = ONE, exp, fn = ZERO, n = ZERO;
2334 int expsign = 0, ok = 0;
2339 if (*s < end && **s !=
'.') {
2340 n = rb_int_parse_cstr(*s, end-*s, &e, NULL,
2341 10, RB_INT_PARSE_UNDERSCORE);
2349 if (*s < end && **s ==
'.') {
2353 fp = rb_int_parse_cstr(*s, end-*s, &e, &count,
2354 10, RB_INT_PARSE_UNDERSCORE);
2360 n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp);
2367 if (ok && *s + 1 < end && islettere(**s)) {
2369 expsign = read_sign(s, end);
2370 exp = rb_int_parse_cstr(*s, end-*s, &e, NULL,
2371 10, RB_INT_PARSE_UNDERSCORE);
2376 if (expsign ==
'-') {
2377 if (fn != ZERO) exp = rb_int_plus(exp, fn);
2380 if (fn != ZERO) exp = rb_int_minus(exp, fn);
2381 exp = negate_num(exp);
2390inline static const char *
2391skip_ws(
const char *s,
const char *e)
2393 while (s < e && isspace((
unsigned char)*s))
2399parse_rat(
const char *s,
const char *
const e,
int strict,
int raise)
2402 VALUE num, den, nexp, dexp;
2405 sign = read_sign(&s, e);
2407 if (!read_num(&s, e, &num, &nexp)) {
2408 if (strict)
return Qnil;
2412 if (s < e && *s ==
'/') {
2414 if (!read_num(&s, e, &den, &dexp)) {
2415 if (strict)
return Qnil;
2418 else if (den == ZERO) {
2419 if (!raise)
return Qnil;
2422 else if (strict && skip_ws(s, e) != e) {
2426 nexp = rb_int_minus(nexp, dexp);
2427 nurat_reduce(&num, &den);
2430 else if (strict && skip_ws(s, e) != e) {
2435 if (INT_NEGATIVE_P(nexp)) {
2440 num = rb_int_mul(num, mul);
2449 div = f_expt10(nexp);
2451 den = rb_int_mul(den, div);
2458 nurat_reduce(&num, &den);
2462 num = negate_num(num);
2469string_to_r_strict(
VALUE self,
int raise)
2477 if (!raise)
return Qnil;
2483 if (!raise)
return Qnil;
2518string_to_r(
VALUE self)
2532rb_cstr_to_rat(
const char *s,
int strict)
2536 num = parse_rat(s, s + strlen(s), strict, TRUE);
2544to_rational(
VALUE val)
2546 return rb_convert_type_with_id(val,
T_RATIONAL,
"Rational", idTo_r);
2552 VALUE a1 = numv, a2 = denv;
2555 assert(!UNDEF_P(a1));
2558 if (!raise)
return Qnil;
2563 if (k_exact_zero_p(RCOMPLEX(a1)->imag))
2564 a1 = RCOMPLEX(a1)->real;
2568 if (k_exact_zero_p(RCOMPLEX(a2)->imag))
2569 a2 = RCOMPLEX(a2)->real;
2576 a1 = float_to_r(a1);
2582 a1 = string_to_r_strict(a1, raise);
2597 a2 = float_to_r(a2);
2603 a2 = string_to_r_strict(a2, raise);
2615 if (UNDEF_P(a2) || (k_exact_one_p(a2)))
2622 VALUE result = rb_protect(to_rational, a1, NULL);
2626 return to_rational(a1);
2630 if (!k_numeric_p(a1)) {
2632 a1 = rb_protect(to_rational, a1, &state);
2639 a1 = rb_check_convert_type_with_id(a1,
T_RATIONAL,
"Rational", idTo_r);
2642 if (!k_numeric_p(a2)) {
2644 a2 = rb_protect(to_rational, a2, &state);
2651 a2 = rb_check_convert_type_with_id(a2,
T_RATIONAL,
"Rational", idTo_r);
2654 if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
2655 (!f_integer_p(a1) || !f_integer_p(a2))) {
2656 VALUE tmp = rb_protect(to_rational, a1, &state);
2663 return f_div(a1, a2);
2667 a1 = nurat_int_value(a1);
2672 else if (!k_integer_p(a2) && !raise) {
2676 a2 = nurat_int_value(a2);
2680 return nurat_s_canonicalize_internal(klass, a1, a2);
2684nurat_s_convert(
int argc,
VALUE *argv,
VALUE klass)
2692 return nurat_convert(klass, a1, a2, TRUE);
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_private_method(klass, mid, func, arity)
Defines klass#mid and makes it private.
#define rb_define_global_function(mid, func, arity)
Defines rb_mKernel #mid.
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
void rb_undef_method(VALUE klass, const char *name)
Defines an undef of a method.
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
#define T_COMPLEX
Old name of RUBY_T_COMPLEX.
#define TYPE(_)
Old name of rb_type.
#define NEWOBJ_OF
Old name of RB_NEWOBJ_OF.
#define RB_INTEGER_TYPE_P
Old name of rb_integer_type_p.
#define RFLOAT_VALUE
Old name of rb_float_value.
#define T_STRING
Old name of RUBY_T_STRING.
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
#define rb_str_cat2
Old name of rb_str_cat_cstr.
#define T_FLOAT
Old name of RUBY_T_FLOAT.
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
#define OBJ_FREEZE_RAW
Old name of RB_OBJ_FREEZE_RAW.
#define T_FIXNUM
Old name of RUBY_T_FIXNUM.
#define CLASS_OF
Old name of rb_class_of.
#define SIZET2NUM
Old name of RB_SIZE2NUM.
#define LONG2FIX
Old name of RB_INT2FIX.
#define FIX2INT
Old name of RB_FIX2INT.
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
#define NUM2DBL
Old name of rb_num2dbl.
#define LONG2NUM
Old name of RB_LONG2NUM.
#define rb_usascii_str_new2
Old name of rb_usascii_str_new_cstr.
#define Qtrue
Old name of RUBY_Qtrue.
#define ST2FIX
Old name of RB_ST2FIX.
#define INT2NUM
Old name of RB_INT2NUM.
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
#define T_ARRAY
Old name of RUBY_T_ARRAY.
#define NIL_P
Old name of RB_NIL_P.
#define FL_WB_PROTECTED
Old name of RUBY_FL_WB_PROTECTED.
#define DBL2NUM
Old name of rb_float_new.
#define NUM2LONG
Old name of RB_NUM2LONG.
#define FIXNUM_P
Old name of RB_FIXNUM_P.
void rb_raise(VALUE exc, const char *fmt,...)
Exception entry point.
void rb_set_errinfo(VALUE err)
Sets the current exception ($!) to the given value.
VALUE rb_eTypeError
TypeError exception.
VALUE rb_eFloatDomainError
FloatDomainError exception.
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports always regardless of runtime -W flag.
VALUE rb_eArgError
ArgumentError exception.
VALUE rb_cRational
Rational class.
VALUE rb_convert_type(VALUE val, int type, const char *name, const char *mid)
Converts an object into another type.
VALUE rb_check_to_int(VALUE val)
Identical to rb_check_to_integer(), except it uses #to_int for conversion.
VALUE rb_cInteger
Module class.
VALUE rb_cNilClass
NilClass class.
VALUE rb_cNumeric
Numeric class.
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)
Queries if the given object is an instance (of possibly descendants) of the given class.
VALUE rb_cFloat
Float class.
VALUE rb_cString
String class.
VALUE rb_to_int(VALUE val)
Identical to rb_check_to_int(), except it raises in case of conversion mismatch.
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
#define rb_check_frozen
Just another name of rb_check_frozen.
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
void rb_provide(const char *feature)
Declares that the given feature is already provided by someone else.
void rb_num_zerodiv(void)
Just always raises an exception.
VALUE rb_int_positive_pow(long x, unsigned long y)
Raises the passed x to the power of y.
VALUE rb_dbl_cmp(double lhs, double rhs)
Compares two doubles.
VALUE rb_num_coerce_cmp(VALUE lhs, VALUE rhs, ID op)
Identical to rb_num_coerce_bin(), except for return values.
VALUE rb_num_coerce_bin(VALUE lhs, VALUE rhs, ID op)
Coerced binary operation.
VALUE rb_rational_raw(VALUE num, VALUE den)
Identical to rb_rational_new(), except it skips argument validations.
VALUE rb_rational_new(VALUE num, VALUE den)
Constructs a Rational, with reduction.
VALUE rb_Rational(VALUE num, VALUE den)
Converts various values into a Rational.
VALUE rb_rational_num(VALUE rat)
Queries the numerator of the passed Rational.
VALUE rb_flt_rationalize(VALUE flt)
Identical to rb_flt_rationalize_with_prec(), except it auto-detects appropriate precision depending o...
VALUE rb_flt_rationalize_with_prec(VALUE flt, VALUE prec)
Simplified approximation of a float.
#define rb_rational_new2(x, y)
Just another name of rb_rational_new.
#define rb_rational_new1(x)
Shorthand of (x/1)r.
VALUE rb_rational_den(VALUE rat)
Queries the denominator of the passed Rational.
st_index_t rb_memhash(const void *ptr, long len)
This is a universal hash function.
void rb_must_asciicompat(VALUE obj)
Asserts that the given string's encoding is (Ruby's definition of) ASCII compatible.
VALUE rb_str_concat(VALUE dst, VALUE src)
Identical to rb_str_append(), except it also accepts an integer as a codepoint.
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
int rb_respond_to(VALUE obj, ID mid)
Queries if the object responds to the method.
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
void rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE(*dumper)(VALUE), VALUE(*loader)(VALUE, VALUE))
Marshal format compatibility layer.
void rb_copy_generic_ivar(VALUE clone, VALUE obj)
Copies the list of instance variables.
#define RARRAY_LEN
Just another name of rb_array_len.
#define RARRAY_AREF(a, i)
static VALUE RBASIC_CLASS(VALUE obj)
Queries the class of an object.
#define RGENGC_WB_PROTECTED_RATIONAL
This is a compile-time flag to enable/disable write barrier for struct RRational.
static char * RSTRING_END(VALUE str)
Queries the end of the contents pointer of the string.
static char * RSTRING_PTR(VALUE str)
Queries the contents pointer of the string.
const char * rb_obj_classname(VALUE obj)
Queries the name of the class of the passed object.
#define RTEST
This is an old name of RB_TEST.
Internal header for Rational.
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
uintptr_t VALUE
Type that represents a Ruby object.
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.